Stanford University

Asteroid surface resource characterization through distributed plasma analysis of meteoroid impact ejecta

PI: Sigrid Close, Stanford University

Team members: Nicolas Lee, California Institute of Technology

Approach

- 1. Plasma evolution model
- Numerical simulation
- Couple existing meteoroid flux data to expected plasma environment near asteroid
- 2 Plasma sensor development
- Parametric sensor analysis and design in simulation
- · Experimental deployment study
- · Experimental performance characterization
- 3. Asteroid map generation
- Apply map estimation techniques to generate surface map derived from plasma evolution model
- Produce map using synthetic asteroid/plasma data in simulation
- Integrate plasma sensor characteristics

Research Objectives

Goals:

- Independent method of asteroid surface resource characterization
- Enable molecular discrimination, rapid coverage, and improved spatial resolution

Innovation:

 Leverage meteoroid impacts to yield measurement of surface composition through plasma formation

Start TRL: 1 (basic impact plasma formation principles studied in lab/simulation)

End TRL: 3 (analytical study of asteroid resource characterization system, proof-of-concept lab studies of sensor technologies

Potential Impact

Direct benefits:

- Lower power/volume/cost resource characterization method to complement spectroscope for asteroid ISRU
- Extend capabilities of small spacecraft systems

Future benefits:

- Additional measurements of deep space meteoroid flux for mission safety
- Enable study of deep space meteoroid and asteroid environment to inform origins of solar system
- Improved characterization of zodiacal light (dust) contamination for C M B observations